Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency
نویسندگان
چکیده
The analysis of quantitative PCR data usually does not take into account the fact that the increase in fluorescence depends on the monitoring chemistry, the input of ds-DNA or ss-cDNA, and the directionality of the targeting of probes or primers. The monitoring chemistries currently available can be categorized into six groups: (A) DNA-binding dyes; (B) hybridization probes; (C) hydrolysis probes; (D) LUX primers; (E) hairpin primers; and (F) the QZyme system. We have determined the kinetics of the increase in fluorescence for each of these groups with respect to the input of both ds-DNA and ss-cDNA. For the latter, we also evaluated mRNA and cDNA targeting probes or primers. This analysis revealed three situations. Hydrolysis probes and LUX primers, compared to DNA-binding dyes, do not require a correction of the observed quantification cycle. Hybridization probes and hairpin primers require a correction of -1 cycle (dubbed C-lag), while the QZyme system requires the C-lag correction and an efficiency-dependent C-shift correction. A PCR efficiency value can be derived from the relative increase in fluorescence in the exponential phase of the amplification curve for all monitoring chemistries. In case of hydrolysis probes, LUX primers and hairpin primers, however, this should be performed after cycle 12, and for the QZyme system after cycle 19, to keep the overestimation of the PCR efficiency below 0.5 %. FigureThe qPCR monitoring chemistries form six groups with distinct fluorescence kinetics. The displacement of the amplification curve depends on the chemistry, DNA input and probe-targeting. The observed shift in Cq values can be corrected and PCR efficiencies can be derived.
منابع مشابه
Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value.
For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence. Hydrolysis reporters (TaqMan probes and QZyme primers) become fluorescent during DNA elongation and the r...
متن کاملModification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review
The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...
متن کاملSynthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes.
Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucl...
متن کاملNovel fluorescent genome editing reporters for monitoring DNA repair pathway utilization at endonuclease-induced breaks
The creation of a DNA break at a specific locus by a designer endonuclease can be harnessed to edit a genome. However, DNA breaks may engage one of several competing repair pathways that lead to distinct types of genomic alterations. Therefore, understanding the contribution of different repair pathways following the introduction of a targeted DNA break is essential to further advance the safet...
متن کاملProbe-based qPCR: Probe Compatibility and Multiplexing with Luna Universal Probe qPCR Master Mix
Quantitative PCR (qPCR) is a commonly used molecular biology technique that enables the precise determination of the amount of DNA or RNA in a sample of interest. By measuring the amount of DNA present at each cycle of a PCR, the concentration in an unknown sample can be calculated by comparison to a set of known standard samples. This real-time measurement of the PCR product is achieved using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 181 شماره
صفحات -
تاریخ انتشار 2014